
High Performance Numerical Calculation in Prolog Execution

Robert Yung tt. Alvin M. Despain t. Peter Van Roy t, Bruce K. Holmer t

t Computer Science Division, University of California, Berkeley, CA 94720

t Xenologic Inc., 39899 Balentine Dr. Suite 145, Newark. CA 94560

4 February 88

ABSTRACT

Numerically intensive calculations are not well supported by Prolog, yet there are important applications that

require tightly coupled symbolic and numeric calculations. We identify some additional built-in predicates and

macros for Prolog to suppon numeric calculations. These predicates are implemented in several layers of software

and hardware, including a specially designed high performance numeric coprocessor. Simulated performance

results indicate the system will achieve about 4 MFLOPS on the Prolog version of some Whetstone benchmarks (in

double precision).

1. Introduction

Contemporary Prolog execution systems provide excellent suppon for symbolic calculations, but are gen­

erally quite weak in their suppon of numeric and linear algebra calculations. Yet some of the most interesting and

challenging applications of logic programming require high performance execution of tightly coupled symbolic and

numeric calculations. Examples include computer-aided design/engineering/manufacturing, sensor fusion, robotics,

constraint logic programming, geometric modeling and reasoning with probabilistic evidence.

In our Aquarius project [6], one of the main applications is design automation [3] and it requires extensive

numeric calculations as well as symbolic manipulations. We are investigating additional built-in predicates and

macros for the Prolog language to better suppon numeric operations. The predicates have a semantic interpretation

in a kernel subset of Prolog, but can be efficiently and directly compiled into powerful machine instructions. At

execution time, most of the machine instructions are executed by a symbolic processor, the PLM [8, 9]. When the

special numeric instructions are fetched by a pre-fetch unit, they are ignored by the symbolic processor and are

acted upon by the Aquarius Numeric Processor (M'P) [15].

The ANP is a high performance vector numeric processor especially designed to suppon numeric operations

that occur in the context of logic programming. Figure 1 shows a block diagram of this integrated ANP/PLM archi­

tecture. The ANP coprocessor of figure 1 is currently under construction using TTL and ECL parts and will be

insened into our current experimental system1 in the near future.

We are struggling with the many conflicting issues that develop when all the complexities of logic program­

ming, floating point calculations, and linear algebra interact with the problems of exceptions, side-effects, efficiency

of execution, and 'beauty' of language expression. It is our desire not to funher burden the semantics of Prolog

with any additional non-logical complications, but at the same time we must provide for efficient numeric

10ur current experiment&} system is a Xenologic model X-1 [7) co-processor with a Sun 3/160 hosL The X-1 is an improved, commercial

version of the PL\1.

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
04 FEB 1988 2. REPORT TYPE

3. DATES COVERED
 00-00-1988 to 00-00-1988

4. TITLE AND SUBTITLE
High Performance Numerical Calculation in Prolog Execution

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of California at Berkeley,Department of Electrical
Engineering and Computer Sciences,Berkeley,CA,94720

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
Numerically intensive calculations are not well supported by Prolog, yet there are important applications
that require tightly coupled symbolic and numeric calculations. We identify some additional built-in
predicates and macros for Prolog to support numeric calculations. These predicates are implemented in
several layers of software and hardware, including a specially designed high performance numeric
coprocessor. Simulated performance results indicate the system will achieve about 4 MFLOPS on the
Prolog version of some Whetstone benchmarks (in double precision).

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

13

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

-2-

r·-·-· ·-·-·-·-·-·-· ·-·-·-·-·-·-·-·-·-·;
i i
i i

MMU j

i
i

,--1.,
I
i
i
i
!
I

L--·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·j

Host

System

ANP/PLM

Processor

System

Figure 1: ANP/PLM System Block Diagram

calculations if the Aquarius system is to be useful for our applications. In the sections below we explain our current

choices and compromises. We fully expect that our system will evolve as we discover and solve problems and gain

experience in debugging and analyzing the new ANP/PLM System.

2. An Example of a Numeric Program

The numerically intensive calculations in science and engineering that are not well supported by Prolog

include the heavy use of floating point, destructive assignment, arrays, and iteration (loops). A simple example

from linear algebra (the solution of tridiagonal systems [12]) illustrates how we intend to address these points. The

original Fortran code (slightly modified for illustration purposes) for this calculation is:

SUBROUTINE TRIDAG(A, B, C, R, U, N)

PARAMETER (NMAX=100)
DIMENSION G(NMAX), A(N), B(N), C(N), R(N), U(N)

H = 1
IF (B(1) .EQ. 0.) PAUSE
E '"' B (1)

U(1) = R(1) I E
DO 11 J • 2, N

11 CONTINUE

G(J) = C(J-1) I E
E • B(J) - A(J) * G(J)
IF (E .EQ. 0.) PAUSE
U(J) "" (R(J) - A(J) * U(J-1)) I E

DO 12 J = N-1, 1, -1
U(J) • (U(J) - G(J+1) * U(J+1)) * H

12 CONTINUE
RETURN

- 3-

END

When this code is directly translated into Prolog, one obtains the following executable code.

tridag(A, B, C, R, NNNU, N) :- test_bet(E) :-

H is 1, E •: • 0 . 0, ! ,

new_array(G), write('E is zero in tridag'), nl,

new_array{U), trace, fail.

aref(1, B, E), test_bet(_).

aref{1, R, R1),

test bet (E},
U1 is R1 I E,
aset(1, U, U1, NU},

xtridag(J, N, _, _, _, _,
_, _,

xtridag{J, N, A, B, C, R,

U, G,
U, G}
u, G,

xtridag(2, N, A, B, C, R, NU, G,
E, NNU, NG},

N1 is N-1,

E, H, NNU,
J1 is J-1,

NNG}

ytridag{N1, NNU, NG, NNNU, H).

ytridag(J, U, _, U, _} :- J < 1.

ytridag(J, U, G, NNU, H) ·- J >• l,

J1 is J+1,
a ref (J, U, UJ} ,

aref(J1, U, UJ1},

aref(J1, G, J1),

aref {J, A, AJ),

a ref (J, B, BJ),

aref(J1, C, CJ1},

aref(J, R, RJ),

aref{J1, U, UJ1},

GJ is CJ1 I E,
aset(J, G, GJ, NG),

NE is BJ - AJ * GJ,

test_bet (NE},

·- J > N.

. J •< N,

NUJ is (UJ - J1 * UJ1) * H,

aset(J, U, NUJ, NU),

UJ is ({RJ- AJ * UJ1) I NE) * H,

aset{J, U, UJ, NU),

NJ is J-1,
ytridag(NJ, NU, G, NNU, H}.

NJ is J+1,
xtridag(NJ, N, A, B, C, R, NU,

NG, NE, NNU, NNG) .

The predicates aref, aset, and new_array are library routines for the support of extendible arrays [13]. In

this implementation arrays are represented by balanced 4-way trees. Thus, the access time is logarithmic in the size

of the array. Although this time may not seem large, an 1000 element array could require more than 20 words to be

wriuen for the modification of a single element. This overhead in both time and memory is not tolerable in high

performance systems. For these reasons, we have introduced new predicates for destructive (yet backtrackable)

assignment.

It is apparent that the readability of the Prolog code is much less than that of the Fortran code. Much of the

clutter is caused by not being able to compute array elements directly in the assignment (is) statements. This prob­

lem is easily corrected by the use of a macro (called *•) which allows user defined functions to be placed in

assignment statements. yve use square brackets to denote array indexing. This does not conflict with list notation

because they always follow a variable.

The Fortran DO loop must be replaced with recursion in Prolog. This in itself is fine, but often a large

number of active variables must be passed to the recursive predicate. Lengthy argument lists inlroduce unnecessary

tedium for the programmer and sources of error. The use of an iteration macro (called do) will alleviate this prob­

lem. The two macros *• and do are described in the next section. The Prolog code can be rewritten as follows.

tridag(A, B, C, R, U) ·­

H is 1,

-4-

E [1] *• B [1), % boundary

V [1] *"" R [1) I B [1] ,
do(J, 2, v length(A), %from 2 to length of A

(G[J] *•-C[J-1] I E[J-1], %induction

E[J] *• B[J] - A[J] * G[J],

Y[J] *• (R[J] - A[J] * V[J-1]))),

U[N] *• V[N],
do (J, (N-1), 1, -1, % from M to 1 step -1

(U[J] *• (V[J] - G[J+1] * U[J+1]) * H)).

It can be seen that the use of the new notation restores the clarity of the algorithm.

3. Prolog Language Issues

We now discuss some important syntactic and semantic issues in providing a clean interface between the

ANP hardware and the Prolog language. There are two general approaches to combine numeric computation with

Prolog: 1) Include a second language which allows efficient implementation (but with procedural semantics) and an

external language interface to Prolog. In this scheme the declarative semantics are lost for the system as a whole.

2) Extend Prolog to allow numeric computation. With care, the semantics of Prolog will be retained while allowing

an efficient implementation. This is the approach we take in this design.

Our extension to the language is guided by three principles. First, it must allow an efficient implementation.

Second, the logical semantics of Prolog should be kept And third, it must be clean for the application programmer.

Our approach has two facets: 1) Introduce new scalar and vector numeric types and operations which are then

directly supported by the ANP, and extend the semantics of Pro log primitives for the new types. 2) Introduce a sim­

ple but powerful macro facility and a data typing scheme to allow concise scientific programming. We describe a

set of suggested macros and built-in predicates which allow this while retaining the logical semantics.

3.1. The Macro Facility

Our macro facility is similar to that of SB-Prolog [2]. The scheme used in ESP [4] was rejected because of its

complexity. The SB-Prolog macro facility will expand a goal inline and partially evaluate it. This simple idea is

quite powerful. It will suffice to implement our ideas if the partial evaluator is general enough, and if assert is

given the proper interpretation.

3.1.1. Assignment and User-defined Functions

In order to denote array assignment and user-defined functions in a concise manner we introduce the : = and

*• macros. These expand array references into explicit calls of new built-ins which access the array elements.

They also expand function calls into goals with an additional argument that will contain the function value. The

*• macro unifies its arguments (thus keeping the logical semantics), while the : .. macro destructively assigns

(with restoration of the value on backtracking). For example, the macro call A [3] : •f (X) will be expanded into

thetwogoals f(X,T), rplacarg(3,A,T). Partofthedefinitionof :• is:

• 5.

(L :~ R) :- right_eval(L, X), left_eval(R, X).

right eval (X, X) :- (number (X) ; var (X)) , ! .

right=eval(Aref, X) :- array_ref(Aref), !,

Aref • .. [AnameiArgs),

eval_index(Args, Index),

aref(Aname, Index, X).

right_eval(A+B, X) :- % similar clauses for other operations

right_eval(A, VA),

right_eval{B, VB),
X is VA+VB.

right_eval(Func, X) :- function_call(Func), !,

Func • .. (Fname!Args),

append(Args, [X), AllArgs),

Call • .. [Fname!AllArgs),

call (Call) .

The *• macro is similarly defined.

3.1.2. Denoting Iteration

We suggest a do macro to denote iteration in a clean way similar to a Fortran DO loop:

do(Index_name, Start_index, End_index, Optional_increment, (Body))

All objects mentioned in the body of the do are global in the scope of the clause in which the do construct

appears. This macro allows the use of destructive assignment in the body. However, if all assignments are done

with *• then the logical semantics are kept. The macro expands into a recursive predicate of the following fonn

which is put in the global data base:

x_do(Index_name, End, ... BodyVars... ·-Index name>End.

x_do(Index_name, End, ... BodyVars... ·- Index_name•<End,

{Body),
New_index is Index_name+Optional_increment,

x_do(New_index, End, ... BodyVars ...) .

The inline code is a sequence of goals initializing the body's variables (as denoted by BodyVars), followed by

the call x_do (Start_index, End_index, ... BodyVars ...) .

3.2. Backtracking Semantics

Ideally, the semantics of the numeric operations would fit into pure Prolog, with single assignment vectors

and full state restoration on baclctracking. This can be achieved sometimes, for example in the do predicate as

used in the tridag example. We do not presently see how it can be achieved in general while keeping the highest

performance. As a compromise, we will present a design which achieves efficiency with no greater hann to the log­

ical semantics than the v a r predicate.

Prolog together with a backtrackable destructive assignment (which we call rplacarg) is no less logical

than Prolog with va r because rplaca rg can be implemented with va r (albeit inefficiently) [11]. When

rplacarg is implemented directly in the underlying architecture it can execute in constant time. We conjecture

that Prolog with this implementation of rplacarg can achieve the same time bound as a procedural language on

any problem.

• 6.

A block of floating point operations is implemented by loading the ANP registers (see below) from the heap,

doing the calculations, and finally storing the results. Trailing of the ANP registers is never done; only the heap is

trailed.

As a result of the above reasoning, we require that vectors must be restored on backtracking just like other

Prolog terms. Destructive assignment is allowed as long as the old value can be restored. There are two methods to

achieve this. The first way is to trail all floating point stores to the heap. Note that loads and numeric operations do

not need to be trailed. The second way is to trail before the first assignment after choice point creations, and then

trail only those vectors which will be changed. The choice of which of these methods to use is up to the compiler.

For efficiency it will attempt to keep all trail checking out of the inner loops. One possible optimization is to recog­

nize that if multiple assignments are done between choice point creations then only the first needs to be trailed.

3.3. Exception Handling

Floating point exceptions are handled by means of failure. The existing failure mechanism in Prolog is

already set up to handle state restoration and continued execution. In order to use this we propose the addition of

two global facts which are always accessible to the program: exception_enable (ExceptionList) 1

exception_occurrence (Exception) where exception_enable is given a list of flags telling what

exception condition(s) will cause failure, and exception_occurrence will unify with the last exception

which has actually caused failure. The programmer is not obliged to use these two facts as long as he realizes what

the cause of a failure is. We implement and support the standard IEEE exceptions and proposed handling scheme

[1, 15] and some ANP-specific exceptions (such as bounds violation) in this design. However, we do not support

user-defined exceptions.

As an example of the use of these predicates, consider the following numeric code which can fail both

through an exception and through design (i.e. choosing an alternate algorithm if the first one is inadequate):

routine(...) ·- algorithml 1 ! . %1st algorithm

routine(...) :- exception_occurrence(none) 1 algorithm2, ! . %2nd algorithm

routine(...) :- exception_occurrence(E) 1 not(E=none) 1 exception_handler.

The nesting of exception handlers is provided naturally through the failure mechanism. A failure caused by an

exception will restore the vectors at the most recent choice point, and go to the next clause, which could contain an

exception handler. Consider this example:

Sequence of goals: ... 1 algo (...) 1 •••

~execution continues here

alga(...) ·- codel ... <exception occurs here> ... code2.

algo(...) ·- exception_handler.

If the handler succeeds then execution continues at the deepest goal containing the exception which has created a

choice point, in this case alga. It does not continue at the exact point of occurrence of the exception. If the

handler is not able to continue then it also will fail and execution will continue at the next higher handler in the

hierarchy. In the example this happens when the call algo (...) fails.

• 7.

The addition of two global facts which change during execution harms the logical semantics. We feel quite

suongly that this should be rectified but we have not yet been able to invent a satisfactory solution that is sufficiently

efficient. Thus we merely make visible the hardware exception registers to the Prolog programmer [10, 14].

4. Machine Programming Model

Because the Aquarius Numeric Processor (ANP) is a coprocessor to the Programmed Logic Machine (PLM),

it inherits the data types and programming model from the PLM [8, 9]. It adds new data types to the programming

model including, in both scalar and vector forms, integer, single and double precision floating point numbers in

IEEE standard (754) form [1]. An extended numeric register set and a large repenoire of integer and floating point

operations are provided for these new data types.

4.1. Representation of the Numeric Data Types

Data in the PLM programming model is represented by 32-bit tagged words. There are four primary types:

list, structure, variable and constant, which are distinguished by bit<31:30>. These are shown in figure 2. Bit<29>

is a cdr bit which is used for compact list representation, and bit<28> is a garbage collection biL This bit is reserved

for data marking during garbage collection. Bit<27:26> of a constant data type further differentiate between a 26-

bit small integer (00), other-numeric header (01), an atom (10) and a nil (11). This tagging information allows

efficient manipulation of data by applying different strategies to operate on each class of data. Although data typing

benefits from efficient execution, it decreases the amount of information that can be stored within each data word.

Several new data types are added to the ANP for numeric computations. The fundamental numeric data types

are 32- and 64-bit integer and single and double precision floating point numbers. Arrays based on these fundamen­

tal data types can be constructed in single and multi-dimensional forms. Integers and floating point numbers for

computation in the ANP conforms to the IEEE Standard P754 [1].

4.1.1. Structure Numeric Representation

The IEEE Standard for binary floating-point specifies numeric operands to be a multiple of a 32-bit word

except for the recommended extended format, which is 80-bits long. To maintain compatibility with this standard

as well as the PLM execution model, an additional 32-bit word is needed to store data type information. The Struc­

ture Numeric Representation (SNR), figure 2) utilizes a structure pointer to the numeric operand it is representing.

The structure pointer has a 28-bit address pointing to the location of the numeric operand on the heap. The first

entry of the numeric operand is a header which has a constant primary tag, garbage collection and cdr bits, an

other-numeric secondary tag (bit<28:27> = 01), four bits of numeric tags and a 16-bit vector length. The numeric

tags specify the extended data types which include vector/scalar (V), double-/single-precision (D), floating­

point/integer (F) and unsigned/signed (S) of the operand. Tag space is also provided for additional numeric types

such as infinite precision integers, (multi-words) bit vectors, decimal, and complex numbers that may be added in

the future. Since the PLM data path cannot directly operate on the 32-bit numeric operands, the entire numeric

structure addressed by an indirect pointer will not be transferred into the PLM register set, but into the M'P instead.

-8-

This encoding scheme is compatible with IEEE standard at the expense of less efficient execution and more memory

storage for numeric operands.

4.2. Dynamic Operand Coercion

Many numeric operations generally -appear in the instruction sets of scientific processors. Often a subset of

equivalent scalar opcodes appear in vectorized fmns as well. Normally the programmer (or the compiler) chooses

the cmect opcodes for the data types used in each program. For general programs. code for testing the input data

types must be added to accommodate the dynamic naEure of the input. 1bere are two undesired side-effects in this

method: 1) The extra code increases the size of the program, thus increasing the demand on a generally critical sys­

tem resource, input/output to main memory. 2) The added test and branch opcodes decrease the efficiency in the

processor's (pre-)fetching mechanism. The second side-effect is greally magnified in a vector processing system in

which the functional units are pipelined. We thus choose to support Dynamic Operand Coercion (000 [15). Pro­

grammers can describe the numeric operations that are required to accomplish a goal without consideration of the

input data types involved. The ANP will do dynamic type checking and coerce the arguments if necessary. The

implementation is such that there is no overhead when no coercion is done (i.e. if the types are identical).

-
-
-
-

IT• 111--a-
01-s ...

II· .-:1

II· ..

Figure 2: PLM Data. tagging representation

• • •

21-ba.a_po_

- Jcr.h (anty)

Figure 3: Structure Numeric Representation

-

I
I
I

I

I

I

• 9.

4.3. Extended Numeric Register Set

The architecture of the ANP adds a number of data and state registers to the PLM programming model. There

are an additional eight general purpose data registers that can be configured for scalar (Fo- F7) or vector (B o- B7)

storage. In addition to these eight data registers, there are 40 scalar registers (Fa - F 47), 16 scratch pad registers

reserved for internal use (F 48 - F 63), 128 predefined constants, and two control and status registers for system con­

trol. Each data register can store a 32-bit integer or a single or double precision floating point number. The data

type and vector length of each vector is stored in the corresponding 32-bit header register (Hz), Figure 4 shows the

combined ANP/PLM register set.

There are two registers in the ANP for status and control communication between the ANP, the PLM and the

memory unit. System parameters can be written to the control register (CR) for initialization of the ANP. Status

and flags can be read from the status register (SR) for debugging.

4.4. The ANP Instruction Set

Data movement instructions provide a means to load or store programmer visible registers in the Al\'P.

Address calculation for these instructions is done in the PLM. The PLM fetches the numeric data structure from the

heap addressed by an A,. register or writes data provided by the ANP to the top of the heap.

FMOVxx instructions move data between an element of a Bz and a Fz register. This allows efficient access

to individual elements of an array. FMOVL/F1vlOVS uses an 8-bit immediate index for B:r. access;

FMOVLF/FMOVSF uses the modulo 256 of a Fy register value as an index for B:r. access.

Ax fu Fx Bx 255

ra aoo 0 Ill .. 1m I - F6< 1.0

IU 105 2 : Vl'32 20 2.1 I 2.2 I

] ... I'll 2 I

' m 15

• ... f6< H

1 - : VFll 11 I -1 2 I

Figure 4: Extended PLM/ ANP register set

• 10.

Table l: The A~P Instruction Set

Data Movement Arithmetic Logical Bit Conversion

fl.OAD ADD NAND LS USP

tl.OAD_CR ADDA ANDNX AS UDP

fSTORE SUB ANDNY ROT ISP

fSTORE_SR SUBA AND IDP

FMOVL_INDEX SUBX ORNX SPU

FMOVLF _INDEX SUBXA ORNY SPI

FMOVS_INDEX MULT OR SPDP

FMOVSF _INDEX MULTA NOR DPU

FMOVE DIV XNOR DPI

fl.OAD_MINDEX XOR DPSP

tl.OAD _IMINDEX NOTX

fSTORE_MINDEX NOTY

fSTORE_IMINDEX PASSX
PASSY
SET
CLR

Monadic Compare Compound Misc.

ABS CMP SQRT CLF

NEG MAX MAC NOP

MIN SMAC
MACS

ABSolute and NEGate operations can be applied to all numeric data types in scalar and vector forms. The

dyadic instructions include several classes of numeric functions. Arithmetic functions such as add, subtract, multi­

ply and divide are supported in both normal form and absolute forms (e.g. Y islA+ Bl). A full set of logical and bit

manipulation operations are included for signed and unsigned integer data types. Shift and rotate instructions accept

a shift count as an immediate value or from a numeric register.

Comparison instructions are used to test conditions for branching instructions and to select the maximum or

minimum value from a set of numbers. Compound instructions are microcoded sequences of the basic operations.

For example, MAC/SMAC/MACS calculates the inner product of two vectors. Conversion instructions provide a

means to change between data formats.

5. ANP Architecture

The purpose of the ANP is to supplement the PLM symbolic processor with high performance numeric opera­

tions while maintaining upward compatibility with the existing PLM's Instruction Set Architecture. This is accom­

plished with an extension of numeric data types and instructions, as described in the previous sections, and an archi­

tecture that efficiently supports these new extensions. The ANP functions as a slave coprocessor to the PLM. The

programmer perceives the PLM/ANP execution model as if all numeric instructions are executed in the PLM. In

systems where an ANP is not present, numeric operations are emulated in software via traps to the host processor.

A Private Memory Bus (PMB) connects the PLM to its memory system. The ANP utilizes the PMB to pro­

vide a logical extension of the PLM registers and instructions in a manner which is transparent to the programmer.

The ANP consists of five independent functional units operating concurrently to achieve high performance in

numeric computations [14, 15]. The Bus Interface Unit (BIU) is responsible for all communications between the

-11-

ANP, PLM and memory system. The Operand Coercion Unit (OCU) provides operand type checking, coercion

(DOC) and vector length management for the Execution Unit The Storage Unit (SlJ) consists of 64 header regis­

ters, 64 scalar registers, eight 256-element vector registers, and 128 predefined constants. lbe Execution Unit (EU)

contains the data path for integer and floating point operations. The bean of the ANP is a Micro Control Unit

(MCU) which consists of a microprogram sequencer, a 96-bit horizontal writable contrOl store, and other circuitry

that handles exception processing and initialization of microcode. A block diagram of the ANP is shown in figure 5.

6. Performance Measurements

Evaluation of the ANP is done in two steps. First. a register transfer level simulator provides a means for the

evaluation of the microarchitecture of the ANP. Second, a hardware implementation will be constructed and tested

with calculations that are too large to be simulated. Preliminary perfonnance measurements were obtained from

simulation of the design using a set of benchmark programs written in Pro log.

6.1. Measurement Results

A set of Prolog programs translated from selected (double precision) Whetstone benchmark mcxlules [5] is

used to verify the correcmess and measure the performance of the PLM/ANP system. The second of the Whetstone

programs 'wh2' is shown below to illustrate the style of some selected Whetstone benchmark modules written in

Prolog with our new array notations.

r·=-l- =±-······························ ---1------········--····:

aru

r·-·-·-·-·-·-·-·-·-·-. I

H ---· i I ,

H-"' H­

-- ~~
~j

~:
'----------' I

MC\J ,

·-·-·-·-·-·-·-·-·--1

su

r·- -·
I J!t:

i r-'L..-1'------,

I
i
iAU.l
I

·- -·-·---,

i I

L--·-}·-T-·-·-·----~---1·-·J

~--·-··········--·----·--·----······-~-~~---··--·-···········--·-----·-·············-------J

Figure 5: ANP Simplified Block Diagram

-12-

wh2 (O,A,_,A) ·- ! .
wh2(N,E,T,Y) ·-

A [0] -: (E [0] + E[l] + E[2] - E[3)) * T,

A [1] -: (A [0] + E[l] - E[2) + E [3]) * T,

A [2] -: (A [0] - A [1] + E[2) + E [3)) * T,

A [3] -: (-A [0) - A [1) + A[2) + E[3)) * T,

M is N - 1,
wh2(M,A,T,Y).

Table 3 shows the measurements obtained from simulation of the ANP architeCture. The second column

shows the number of floating point operations (flop) in one iteration of the corresponding benchmark. Columns

three to six show the variation in mega-flops (MFLOPS) when each benchmark is run for one hundred, one

thousand, ten thousand and one hundred thousand iterations.

Table 3: Simulated Benchmark Performance (units in MFLOPS)

Iterations (double precision calculations)

test ftop 100 lK lOK lOOK comments

whl 16 4.36 4.55 4.57 4.57 simple identifier

wh2 16 4.42 4.56 4.57 4.57 array element

wh3 102 3.42 3.43 3.43 3.43 array as parameter

wh6 15 3.38 3.48 3.49 3.49 integer arithmetic

wh8 7 2.32 2.40 2.41 2.41 procedure call

whlO 5 3.64 3.83 3.84 3.85 integer arithmetic

mac 511 16.08 18.24 18.25 18.25 inner product

7. Conclusions

Our preliminary results are encouraging. The language constructs we developed allow clean, compact and

easy to understand numeric programs. They also have semantics within kernel Prolog and efficient mappings into

the specialized hardware of the ANP/PLM system. Simulation results indicate a perfonnance of 4 MFLOPS (in

double precision) on selected modules of the Whetstone benchmark written in Prolog. Thus numeric perfonnance is

reasonably well matched with the PLM symbolic perfonnance.

Acknowledgement

The Aquarius Project, of which this study is a part, is a group effort. The authors wish to express their grati­

tude to the other members of the group. In particular Yale Patt, Tep Dobry, Vason Srini, Mike Carlton and Jerrie

Tam. We also acknowledge the stimulating interactions with William Kahan and Paul Hilfinger of UCB, Robert

Owen of BIT Inc., Lynn Ackler, Chris Brooks and Barton Sano of Xenologic Inc. and John Yung of SUN

Microsystems for his help in simulating the microarchit.ecture. We also thank Valid Logic Corporation and MMI

for their generous contributions of equipment and parts and Doug McCafferty for his help in obtaining the CAD

software for schematic capture and circuit simulation. This work is partially sponsored by the Defense Advanced

Research Projects Agency (DoD) Arpa Order No. 4871 and monitored by Space and Naval Warfare System Com­

mand under contract No. N00039-84-C-0089, and by the California MlCRO Program.

- 13-

References

1. A Proposed Standard for Binary Floating-Point Arithmetic- Task P754, Microprocessor Standards Commit-

tee, IEEE Computer Society (1981).

2. The SB-Pro/og System, Version 2.2,A User Manual, Dept. of CS, University of Arizona (Mar 1987).

3. Bush, W. R. et al., "An Advanced Silicon Compiler In Prolog," Conf. Proc. of the ICCD -1987, (1987).

4. Chikayama, T., Unique Features of ESP, ICOT Technical Report TM-0055 (Apr 1984).

5. Curnow, H. J. and Wichman, B. A., "A Synthetic Benchmark," Computer Journal19(1)(Feb 1976).

6. Despain, A.M. et al., "Aquarius," Computer Architecture News, (Mar 1987).

7. Despain, A. M., "A High Performance Prolog Co-Processor," Digest of Papers, WESCON 1985, IEEE Press,

(1985).

8. Dobry, T. P., Despain, A.M., and Pall, Y. N., "Performance Studies of a Prolog Machine Architecture,"

Conf Proc. of the 12thAnnual/SCA, (Jun 1985).

9. Dobry, T. P., "A High Performance Architecture For Prolog," PhD Dissertation, Computer Science Divi­

sion, University of California, Berkeley CA (May 1987).

10. Kahan, W. M., "Handling Arithmetic Exceptions," unpublished notes, Computer Science Division, Univer­

sity of California, Berkeley CA (1987).

11. McGeer, R. et al., "Prolog for VLSI Layout: Experiences in the Design and Implementation of Topolog, A

Prolog Based Module Generation and Layout System," Report No. UCBICSD 871363, Computer Science

Division, University of California, (July 1987).

12. Press, W. H., Flannery, B. P., Teukolsky, S. A., and Veuerling, W. T., Nu~rical Recipes - The Art of

Scientific Computing. 1986.

13. Warren, D. H. D. and , F. Pereira, "Extendible arrays with logarithmic access time," Quintus Prolog

Library, (1985).

14. Yung, Robert and Despain, Alvin M., "Aquarius Numeric Processor," Submitted to the 13th annual/SCA,

(May 1988).

15. Yung, Robert, "Aquarius Numeric Processor," Masters Thesis, Computer Science Division, University of

California, (In preparation).

